Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa.

نویسندگان

  • Chaoguang Tian
  • William T Beeson
  • Anthony T Iavarone
  • Jianping Sun
  • Michael A Marletta
  • Jamie H D Cate
  • N Louise Glass
چکیده

The filamentous fungus Neurospora crassa is a model laboratory organism, but in nature is commonly found growing on dead plant material, particularly grasses. Using functional genomics resources available for N. crassa, which include a near-full genome deletion strain set and whole genome microarrays, we undertook a system-wide analysis of plant cell wall and cellulose degradation. We identified approximately 770 genes that showed expression differences when N. crassa was cultured on ground Miscanthus stems as a sole carbon source. An overlap set of 114 genes was identified from expression analysis of N. crassa grown on pure cellulose. Functional annotation of up-regulated genes showed enrichment for proteins predicted to be involved in plant cell wall degradation, but also many genes encoding proteins of unknown function. As a complement to expression data, the secretome associated with N. crassa growth on Miscanthus and cellulose was determined using a shotgun proteomics approach. Over 50 proteins were identified, including 10 of the 23 predicted N. crassa cellulases. Strains containing deletions in genes encoding 16 proteins detected in both the microarray and mass spectrometry experiments were analyzed for phenotypic changes during growth on crystalline cellulose and for cellulase activity. While growth of some of the deletion strains on cellulose was severely diminished, other deletion strains produced higher levels of extracellular proteins that showed increased cellulase activity. These results show that the powerful tools available in N. crassa allow for a comprehensive system level understanding of plant cell wall degradation mechanisms used by a ubiquitous filamentous fungus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa

BACKGROUND Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall decon...

متن کامل

Neurospora crassa: looking back and looking forward at a model microbe.

Investigation of the red bread mold that contaminated French bakeries nearly two centuries ago has led to a wealth of discoveries that have impacted our understanding of genetic, biochemical, and molecular mechanisms in microbes, from Mendelian genetics and the gene-enzyme relationship to circadian rhythm and plant cell wall degradation. Early Neurospora research focused on elucidating mechanis...

متن کامل

Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction

Filamentous fungi are the main source of enzymes used to degrade lignocellulose to fermentable sugars for the production of biofuels. While the most commonly used organism for the production of cellulases in an industrial setting is Trichoderma reesei (Hypocrea jecorina), recent work in the model filamentous fungus Neurospora crassa has shown that the variety of molecular, genetic and biochemic...

متن کامل

MOLECULAR ANALYSIS OF THE SULFUR REGULATORY CIRCUIT OF NEUROSPORA CRASSA

The sulfur regulatory circuit of the filamentous fungus, Neurospora crassa, consists of a set of unlinked structural genes which encode sulfur catabolic and two major regulatory genes which govern their expression. The cys-3 regulatory gene encode a transacting regulatory protein which activates the expression of cys-14 and ars, whereas the other regulatory genes Scon-l and Scon-2 appear to...

متن کامل

Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules.

The cellular basis of organelle transport in filamentous fungi is still unresolved. Here we have studied the intracellular movement of mitochondria and other organelles in the fungus Neurospora crassa. Four different model systems were employed: hyphae, protoplasts, a cell wallless mutant, and experimentally generated small, flattened cell fragments of the mutant cells. Organelle movements were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 52  شماره 

صفحات  -

تاریخ انتشار 2009